Search results for "Wavelength shifter"

showing 9 items of 9 documents

NEXT-100 Technical Design Report (TDR). Executive summary

2012

[EN] In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (ßß0v) in 136XE at the Laboratorio Subterráneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout pla…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhotomultiplierPhysics - Instrumentation and DetectorsBar (music)Time projection chambersFOS: Physical scienceschemistry.chemical_elementWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)chemistry.chemical_compoundXenonOptics0103 physical sciences010306 general physicsInstrumentationMathematical PhysicsPhysicsTime projection chamber010308 nuclear & particles physicsbusiness.industryDetectorFísicaTetraphenyl butadieneDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsDetectors de gasoschemistryDetector design and construction technologies and materialsbusinessJournal of Instrumentation
researchProduct

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

2021

To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detect…

organic compounds: admixtureNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorscintillation counter: liquidAnalytical chemistryFOS: Physical sciencesmodel: opticalScintillatorWavelength shifterantineutrino: detector01 natural sciencesNOHigh Energy Physics - Experimentwavelength shifterHigh Energy Physics - Experiment (hep-ex)PE2_2Daya BayNeutrino0103 physical sciencesfluorine: admixture[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsJUNO010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorLight yield; Liquid scintillator; NeutrinoInstrumentation and Detectors (physics.ins-det)Yield (chemistry)Scintillation counterComposition (visual arts)photon: yieldNeutrinoLight yieldNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The liquid-argon scintillation pulseshape in DEAP-3600

2020

AbstractDEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scin…

PhotomultiplierPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsDark matterFOS: Physical scienceslcsh:AstrophysicsScintillatorWavelength shifter01 natural sciencesParticle detectorDEAPOptics0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)PhysicsScintillation010308 nuclear & particles physicsbusiness.industryInstrumentation and Detectors (physics.ins-det)Scintillation counterlcsh:QC770-798businessEuropean Physical Journal C: Particles and Fields
researchProduct

Ageing studies of TPB in noble gas detectors for dark matter and neutrinoless ββ decay searches

2017

Noble gases (Xe, Ar, Kr) are very attractive as detector media in Dark Matter search and neutrinoless double-beta decay experiments. However, the detection of their scintillation light (in the VUV spectral region) requires shifting the VUV light to visible light, where standard photosensors are more efficient. Tetraphenyl butadiene (TPB) is widely used as wavelength shifter, absorbing the VUV light and re-emitting in the blue region (~430nm). TPB is an organic molecule that may degrade due to exposure to environmental agents and also to ultraviolet light. In this work, we present TPB ageing studies due to exposure to VUV light, aiming at quantifying the reduction of the absolute fluorescenc…

PhysicsScintillation010308 nuclear & particles physicsPhotodetectorNoble gasTetraphenyl butadieneWavelength shifter01 natural sciences7. Clean energyAtomic and Molecular Physics and OpticsAnalytical Chemistrylaw.inventionchemistry.chemical_compoundchemistry13. Climate actionlaw0103 physical sciencesUltraviolet lightAtomic physics010306 general physicsInstrumentationSpectroscopyVisible spectrumMonochromator
researchProduct

SiPMs coated with TPB: coating protocol and characterization for NEXT

2012

[EN] Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless \bb decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifte…

Materials sciencePhysics - Instrumentation and DetectorsFOS: Physical scienceschemistry.chemical_elementengineering.materialWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)XenonSilicon photomultiplierCoating0103 physical sciencesSensitivity (control systems)Visible and IR photons (solid-state)010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsScintillationTime projection chamber010308 nuclear & particles physicsbusiness.industryTime projection Chambers (TPC)FísicaDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsScintillators scintillation and light emission processes (solid gas and liquid scintillators)Detectors de gasoschemistryParticle tracking detectors (Solid-state detectors)engineeringOptoelectronicsbusiness
researchProduct

AX-PET: Concept, proof of principle and first results with phantoms

2010

AX-PET is a novel PET concept based on long crystals axially arranged and orthogonal Wavelength shifter (WLS) strips, both individually readout by Geiger-mode Avalanche Photo Diodes (G-APD). Its design was conceived in order to reduce the parallax error and simultaneously improve spatial resolution and sensitivity. The assessment of the AX-PET concept and potential was carried out through a set of measurements comprising individual module characterizations and scans in coincidence mode of point-like and extended sources. The estimated energy and spatial resolutions from point-like measurements are R FWHM =11.6% (at 511 keV) and 1.7–1.9 mm (FWHM) respectively as measured with point-like sour…

Coincidence modePhysicsbusiness.industryExtended sourcesSTRIPSIterative reconstructionConcept-basedWavelength shifterAvalanche photodiodeCoincidencelaw.inventionOpticslawCoincidence mode; Concept-based; Extended sourcesbusinessParallaxImage resolutionDiodeIEEE Nuclear Science Symposuim & Medical Imaging Conference
researchProduct

GENERAZIONE DI SECONDA ARMONICA IN GUIDA D’ONDA IN TANTALATO DI LITIO CONGRUENTE CON POLING PERIODICO E CONVERSIONE DI LUNGHEZZA D’ONDA IN BANDA C + L

2010

Here we show the results obtained by the characterization of a lithium-tantalate based device for second-harmonic-generation and all-optical wavelength conversion. The waveguides have been obtained by proton-exchange in a periodically-poled congruent lithium tantalate substrate.

Second-harmonic generation Lithium tantalate Wavelength shifter
researchProduct

A Wavelength-shifting Optical Module (WOM) for in-ice neutrino detectors

2016

7th Very Large Volume Neutrino Telescope Workshop, Rome, Italy, 14 Sep 2015 - 16 Sep 2015 ; The European physical journal / Web of Conferences 116, 01006 (2016). doi:10.1051/epjconf/201611601006

PhysicsTotal internal reflection010504 meteorology & atmospheric sciences010308 nuclear & particles physicsbusiness.industryPhysics::Instrumentation and DetectorsPhysicsQC1-999Astrophysics::High Energy Astrophysical PhenomenaDetectorWavelength shifter01 natural sciencesNoise (electronics)530WavelengthOpticsNeutrino detector0103 physical sciencesddc:530businessCherenkov radiation0105 earth and related environmental sciencesDark current
researchProduct

A Monte-Carlo based model of the AX-PET demonstrator and its experimental validation

2013

AX-PET is a novel PET detector based on axially oriented crystals and orthogonal wavelength shifter (WLS) strips, both individually read out by silicon photo-multipliers. Its design decouples sensitivity and spatial resolution, by reducing the parallax error due to the layered arrangement of the crystals. Additionally the granularity of AX-PET enhances the capability to track photons within the detector yielding a large fraction of inter-crystal scatter events. These events, if properly processed, can be included in the reconstruction stage further increasing the sensitivity. Its unique features require dedicated Monte-Carlo simulations, enabling the development of the device, interpreting …

PhotonRadiological and Ultrasound TechnologyPhysics::Instrumentation and Detectors010308 nuclear & particles physicsComputer scienceDetectorMonte Carlo methodWavelength shifter01 natural sciences030218 nuclear medicine & medical imagingComputational science03 medical and health sciences0302 clinical medicinePositron-Emission Tomography0103 physical sciencesRadiology Nuclear Medicine and imagingSensitivity (control systems)ParallaxMonte Carlo MethodImage resolutionSimulationPhysics in Medicine and Biology
researchProduct